Comments by Rafael Repullo on

Fund Managers and Defaultable Debt

Veronica Guerrieri and Péter Kondor

Conference on Modeling Financial Frictions Chicago GSB, May 9-10, 2008

Motivation

- Changes in fundamentals seem to have very large effects
 - → On prices: very low or very high bond yield spreads
 - → On quantities: "search for yield" or "flight to quality"
- What is the amplification mechanism?

This paper

- Model of delegated portfolio management
 - Investors hire and fire fund managers
 - Managers can be good (informed) or bad (uninformed)
 - Fund performance reveals information → Firing decisions
 - Fund managers care about their reputation
 - → Distort investment decisions
 - → Effect on equilibrium prices and quantities
- Key assumption: Risk neutrality of investors and fund managers

Overview

- Model setup
 - Entrepreneurs
 - Investors
 - Fund managers
 - Bond market
- Equilibrium analysis & main results
- Main comments
- A simple model
- Concluding remarks

Entrepreneurs

- Overlapping generations of measure 1
- No initial wealth + outside option \overline{V}
- Investment project with cost k and random return $a \to \operatorname{cdf} F(a)$
- Debt finance + Strategic default (zero repayment) for $a < \overline{a}$
- Probability of default $q = F(\overline{a})$
- Entrepreneurs choose present and future consumption

Investors

- Continuum of measure Γ
- Each investor has 1 unit of capital at each date
- Investment requires hiring single fund manager
- Sharing contract: manager keeps fraction γ of returns

Fund managers (i)

- Large continuum of managers
- Two types
 - \rightarrow Informed: know return a at time of investment
 - → Uninformed: know expected return of investment
- Two assets
 - → Bonds issued by entrepreneurs (with endogenous returns)
 - \rightarrow Safe asset (with infinitely elastic supply at rate R)

Fund managers (ii)

- Cost κ of becoming "active"
- Probability μ of finding an investor
- Type revealed ex-post with probability 1ω
- Death with probability 1δ
- Investors observe fund performance
 - → Update beliefs on type of manager
 - → Decide on firing

Bond market

- Informed managers send demand schedule
- Uninformed managers send demand correspondence
- Noise traders send inelastic demand $y \sim U[0, \overline{y}]$
- Auctioneer sets bond price p to clear the market
 - → Price will in general reveal information
 - → Uninformed managers take this into account

Equilibrium analysis

- Focus on stationary equilibria
- Focus on equilibria where uninformed managers are indifferent
 - → Interior stationary equilibria
- Focus on case where measure of informed managers tends to 0
 - → Limit interior stationary equilibria
- Compare this with benchmark with no informed managers

Main results (i)

- In benchmark equilibrium (without informed managers)
 - → Expected return of bond = Risk-free rate

$$\frac{1-q}{p} = R$$

- In limit equilibrium
 - → Reputational premium or discount

$$\Pi = \frac{1 - q}{p} - R \ge 0 \iff q \ge \frac{1}{2}$$

Main results (ii)

- Change in fundamentals (such as the riskless rate *R*)
 - → Larger effects in limit equilibrium (relative to benchmark)
 - → Amplification mechanism
- Premium is positive during crises times (high q)

Main comment (i)

- Model is very complicated → Many different ingredients
 - Strategic default by entrepreneurs
 - Learning about fund managers' types
 - Search and matching of investors and fund managers
 - Information revelation by prices
 - Limit equilibrium where informed managers disappear

Main comment (ii)

- Some ad-hoc assumptions
 - Entrepreneurial finance: Debt contracts
 - Management compensation: Sharing contracts
 - Preferences of investors and fund managers
 - Uniform distribution of noise trading

- \rightarrow How robust are the results?
- \rightarrow What is the intuition?

A simple model (i)

- Static model with two dates (t = 0, 1) and two states $(s = s_0, s_1)$
- Continuum of investors that employ continuum of managers
 - Fraction λ of managers are informed at t = 0 about state s
 - Sharing contract: manager keeps fraction γ of returns
 - Uninformed manager gets utility loss c when found out

A simple model (ii)

- Unit investment in one of two assets
 - − Safe asset with gross return *R*
 - Risky asset with stochastic return

$$1 \rightarrow \begin{cases} H(x) & \text{with probability } 1-q & \text{(in state } s_1) \\ 0 & \text{with probability } q & \text{(in state } s_0) \end{cases}$$

where x = aggregate investment in risky asset

$$H(x) > R$$
 and $H'(x) < 0$

→ decreasing returns

A simple model (iii)

- Informed manager invests in
 - Safe asset in state s_0 (when return of risky asset is 0)
 - Risky asset in state s_1
- Uninformed manager invests in safe asset if

Expected payoff (safe) > Expected payoff (risky)

A simple model (iv)

- Payoff of uninformed manager when she invests in safe asset
 - If state is s_0 : γR
 - If state is s_1 : $\gamma R c$
 - \rightarrow Expected payoff: $\gamma R (1-q)c$
- Payoff of uninformed manager when she invests in risky asset
 - If state is s_0 : -c
 - If state is s_1 : $\gamma H(x)$
 - \rightarrow Expected payoff: $(1-q)\gamma H(x)-qc$

Equilibrium analysis (i)

- Focus on equilibria where uninformed managers are indifferent
 - → Interior equilibria
- Equilibrium condition

$$(1-q)\gamma H(\lambda + (1-\lambda)\eta) - qc = \gamma R - (1-q)c$$

where η = fraction of uninformed that invest in risky asset

- Focus on case where measure of informed managers tends to 0
 - → Limit interior equilibria

$$(1-q)\gamma H(\eta) - qc = \gamma R - (1-q)c$$

Equilibrium analysis (ii)

• Equilibrium of benchmark model with no informed managers

$$(1-q)\gamma H(\eta) = \gamma R$$

- \rightarrow Expected return of risky asset = R
- In limit equilibrium
 - → Reputational premium or discount

$$\Pi = (1 - q)H(\eta) - R = \frac{(2q - 1)c}{\gamma} \ge 0 \iff q \ge \frac{1}{2}$$

→ Same result as in paper!

Comparative statics

- Effect of an increase in the probability q of the bad state s_0
 - \rightarrow In benchmark equilibrium $\frac{d\Pi}{dq} = 0$
 - \rightarrow In limit equilibrium $\frac{d\Pi}{dq} = \frac{2c}{\gamma} > 0$
- Changes in fundamentals may have large effects on spreads
 - \rightarrow Especially when c is large or γ is small

Intuition

- When the probability q of the bad state s_0 is high
 - → Uninformed investors have more incentives to be prudent
 - \rightarrow Low investment η in risky asset ("flight to quality")
 - \rightarrow High return $H(\eta)$ of risky asset (positive premium)

Concluding remarks

- Nice paper on amplification mechanism
 - → Does not rely on changes in "risk appetite"
- Model should focus on key ingredients
 - → Get rid of information revealed by prices
- Look at equilibrium away from the limit $(\lambda > 0)$
- Could you get $\Pi > 0$ for smaller values of q?
- Mechanism also applies to assets other than debt
 - → Change title!